跳转至

请求体 - 更新

使用 PUT 进行替换更新

要更新一个项目,你可以使用 HTTP PUT 操作。

你可以使用 jsonable_encoder 将输入数据转换为可以存储为 JSON 的数据(例如使用 NoSQL 数据库)。例如,将 datetime 转换为 str

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str | None = None
    description: str | None = None
    price: float | None = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.put("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    update_item_encoded = jsonable_encoder(item)
    items[item_id] = update_item_encoded
    return update_item_encoded
🤓 Other versions and variants
from typing import Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.put("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    update_item_encoded = jsonable_encoder(item)
    items[item_id] = update_item_encoded
    return update_item_encoded
from typing import List, Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: List[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.put("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    update_item_encoded = jsonable_encoder(item)
    items[item_id] = update_item_encoded
    return update_item_encoded

PUT 用于接收应替换现有数据的数据。

关于替换的警告

这意味着如果你想使用 PUT 更新项目 bar,请求体包含:

{
    "name": "Barz",
    "price": 3,
    "description": None,
}

因为它不包含已存储的属性 "tax": 20.2,输入模型将采用默认值 "tax": 10.5

并且数据将保存为这个“新”的 tax10.5

使用 PATCH 进行部分更新

你也可以使用 HTTP PATCH 操作来部分更新数据。

这意味着你可以只发送想要更新的数据,其余部分保持不变。

Note

PATCH 不如 PUT 常用和知名。

许多团队即使进行部分更新也仅使用 PUT

你可以自由选择使用它们的方式,FastAPI 不会施加任何限制。

但本指南或多或少向你展示了它们预期的使用方式。

使用 Pydantic 的 exclude_unset 参数

如果你想接收部分更新,使用 Pydantic 模型的 .model_dump() 中的 exclude_unset 参数非常有用。

例如 item.model_dump(exclude_unset=True)

Info

在 Pydantic v1 中,该方法名为 .dict(),在 Pydantic v2 中已被弃用(但仍受支持),并重命名为 .model_dump()

这里的示例使用 .dict() 以保持与 Pydantic v1 的兼容性,但如果你可以使用 Pydantic v2,则应使用 .model_dump()

这将生成一个仅包含创建 item 模型时设置的数据的 dict,排除默认值。

然后你可以使用它来生成一个仅包含已设置(在请求中发送)数据的 dict,省略默认值:

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str | None = None
    description: str | None = None
    price: float | None = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
🤓 Other versions and variants
from typing import Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
from typing import List, Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: List[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item

使用 Pydantic 的 update 参数

现在,你可以使用 .model_copy() 创建现有模型的副本,并传递包含要更新数据的 dict 作为 update 参数。

Info

在 Pydantic v1 中,该方法名为 .copy(),在 Pydantic v2 中已被弃用(但仍受支持),并重命名为 .model_copy()

这里的示例使用 .copy() 以保持与 Pydantic v1 的兼容性,但如果你可以使用 Pydantic v2,则应使用 .model_copy()

例如 stored_item_model.model_copy(update=update_data)

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str | None = None
    description: str | None = None
    price: float | None = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
🤓 Other versions and variants
from typing import Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
from typing import List, Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: List[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item

部分更新回顾

总之,要应用部分更新,你需要:

  • (可选)使用 PATCH 而不是 PUT
  • 检索存储的数据。
  • 将该数据放入 Pydantic 模型中。
  • 从输入模型生成没有默认值的 dict(使用 exclude_unset)。
    • 这样你可以只更新用户实际设置的值,而不是用模型中的默认值覆盖已存储的值。
  • 创建存储模型的副本,使用接收到的部分更新来更新其属性(使用 update 参数)。
  • 将复制的模型转换为可以存储到数据库中的形式(例如,使用 jsonable_encoder)。
    • 这类似于再次使用模型的 .model_dump() 方法,但它确保(并转换)值转换为可以转换为 JSON 的数据类型,例如将 datetime 转换为 str
  • 将数据保存到数据库。
  • 返回更新后的模型。
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str | None = None
    description: str | None = None
    price: float | None = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
🤓 Other versions and variants
from typing import Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: list[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item
from typing import List, Union

from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: Union[str, None] = None
    description: Union[str, None] = None
    price: Union[float, None] = None
    tax: float = 10.5
    tags: List[str] = []


items = {
    "foo": {"name": "Foo", "price": 50.2},
    "bar": {"name": "Bar", "description": "The bartenders", "price": 62, "tax": 20.2},
    "baz": {"name": "Baz", "description": None, "price": 50.2, "tax": 10.5, "tags": []},
}


@app.get("/items/{item_id}", response_model=Item)
async def read_item(item_id: str):
    return items[item_id]


@app.patch("/items/{item_id}", response_model=Item)
async def update_item(item_id: str, item: Item):
    stored_item_data = items[item_id]
    stored_item_model = Item(**stored_item_data)
    update_data = item.dict(exclude_unset=True)
    updated_item = stored_item_model.copy(update=update_data)
    items[item_id] = jsonable_encoder(updated_item)
    return updated_item

Tip

你实际上可以在 HTTP PUT 操作中使用相同的技术。

但这里的示例使用 PATCH,因为它就是为这些用例创建的。

Note

请注意,输入模型仍然经过验证。

因此,如果你想接收可以省略所有属性的部分更新,你需要一个所有属性都标记为可选(具有默认值或 None)的模型。

为了区分用于更新的所有值可选的模型和用于创建的具有必需值的模型,你可以使用 额外模型 中描述的思想。