子依赖项¶
您可以创建具有子依赖项的依赖项。
它们可以按照您的需要任意嵌套。
FastAPI 将负责解析它们。
第一个依赖项(“可依赖项”)¶
您可以创建一个如下所示的第一层依赖项(“可依赖项”):
from typing import Annotated
from fastapi import Cookie, Depends, FastAPI
app = FastAPI()
def query_extractor(q: str | None = None):
return q
def query_or_cookie_extractor(
q: Annotated[str, Depends(query_extractor)],
last_query: Annotated[str | None, Cookie()] = None,
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(
query_or_default: Annotated[str, Depends(query_or_cookie_extractor)],
):
return {"q_or_cookie": query_or_default}
🤓 Other versions and variants
from typing import Annotated, Union
from fastapi import Cookie, Depends, FastAPI
app = FastAPI()
def query_extractor(q: Union[str, None] = None):
return q
def query_or_cookie_extractor(
q: Annotated[str, Depends(query_extractor)],
last_query: Annotated[Union[str, None], Cookie()] = None,
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(
query_or_default: Annotated[str, Depends(query_or_cookie_extractor)],
):
return {"q_or_cookie": query_or_default}
from typing import Union
from fastapi import Cookie, Depends, FastAPI
from typing_extensions import Annotated
app = FastAPI()
def query_extractor(q: Union[str, None] = None):
return q
def query_or_cookie_extractor(
q: Annotated[str, Depends(query_extractor)],
last_query: Annotated[Union[str, None], Cookie()] = None,
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(
query_or_default: Annotated[str, Depends(query_or_cookie_extractor)],
):
return {"q_or_cookie": query_or_default}
Tip
Prefer to use the Annotated version if possible.
from fastapi import Cookie, Depends, FastAPI
app = FastAPI()
def query_extractor(q: str | None = None):
return q
def query_or_cookie_extractor(
q: str = Depends(query_extractor), last_query: str | None = Cookie(default=None)
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(query_or_default: str = Depends(query_or_cookie_extractor)):
return {"q_or_cookie": query_or_default}
Tip
Prefer to use the Annotated version if possible.
from typing import Union
from fastapi import Cookie, Depends, FastAPI
app = FastAPI()
def query_extractor(q: Union[str, None] = None):
return q
def query_or_cookie_extractor(
q: str = Depends(query_extractor),
last_query: Union[str, None] = Cookie(default=None),
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(query_or_default: str = Depends(query_or_cookie_extractor)):
return {"q_or_cookie": query_or_default}
它声明了一个可选的查询参数 q,类型为 str,然后直接返回它。
这个依赖项非常简单(不太实用),但能帮助我们专注于理解子依赖项的工作原理。
第二个依赖项(“可依赖项”兼“依赖项”)¶
然后您可以创建另一个依赖函数(“可依赖项”),同时它自己也声明了一个依赖项(因此它也是一个“依赖项”):
from typing import Annotated
from fastapi import Cookie, Depends, FastAPI
app = FastAPI()
def query_extractor(q: str | None = None):
return q
def query_or_cookie_extractor(
q: Annotated[str, Depends(query_extractor)],
last_query: Annotated[str | None, Cookie()] = None,
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(
query_or_default: Annotated[str, Depends(query_or_cookie_extractor)],
):
return {"q_or_cookie": query_or_default}
🤓 Other versions and variants
from typing import Annotated, Union
from fastapi import Cookie, Depends, FastAPI
app = FastAPI()
def query_extractor(q: Union[str, None] = None):
return q
def query_or_cookie_extractor(
q: Annotated[str, Depends(query_extractor)],
last_query: Annotated[Union[str, None], Cookie()] = None,
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(
query_or_default: Annotated[str, Depends(query_or_cookie_extractor)],
):
return {"q_or_cookie": query_or_default}
from typing import Union
from fastapi import Cookie, Depends, FastAPI
from typing_extensions import Annotated
app = FastAPI()
def query_extractor(q: Union[str, None] = None):
return q
def query_or_cookie_extractor(
q: Annotated[str, Depends(query_extractor)],
last_query: Annotated[Union[str, None], Cookie()] = None,
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(
query_or_default: Annotated[str, Depends(query_or_cookie_extractor)],
):
return {"q_or_cookie": query_or_default}
Tip
Prefer to use the Annotated version if possible.
from fastapi import Cookie, Depends, FastAPI
app = FastAPI()
def query_extractor(q: str | None = None):
return q
def query_or_cookie_extractor(
q: str = Depends(query_extractor), last_query: str | None = Cookie(default=None)
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(query_or_default: str = Depends(query_or_cookie_extractor)):
return {"q_or_cookie": query_or_default}
Tip
Prefer to use the Annotated version if possible.
from typing import Union
from fastapi import Cookie, Depends, FastAPI
app = FastAPI()
def query_extractor(q: Union[str, None] = None):
return q
def query_or_cookie_extractor(
q: str = Depends(query_extractor),
last_query: Union[str, None] = Cookie(default=None),
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(query_or_default: str = Depends(query_or_cookie_extractor)):
return {"q_or_cookie": query_or_default}
让我们重点关注声明的参数:
- 尽管这个函数本身是一个依赖项(“可依赖项”),但它也声明了另一个依赖项(它“依赖于”其他东西)。
- 它依赖于
query_extractor,并将其返回值赋给参数q。
- 它依赖于
- 它还声明了一个可选的
last_querycookie,类型为str。- 如果用户没有提供查询参数
q,我们将使用上次使用的查询(之前已保存到 cookie 中)。
- 如果用户没有提供查询参数
使用依赖项¶
然后我们可以这样使用依赖项:
from typing import Annotated
from fastapi import Cookie, Depends, FastAPI
app = FastAPI()
def query_extractor(q: str | None = None):
return q
def query_or_cookie_extractor(
q: Annotated[str, Depends(query_extractor)],
last_query: Annotated[str | None, Cookie()] = None,
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(
query_or_default: Annotated[str, Depends(query_or_cookie_extractor)],
):
return {"q_or_cookie": query_or_default}
🤓 Other versions and variants
from typing import Annotated, Union
from fastapi import Cookie, Depends, FastAPI
app = FastAPI()
def query_extractor(q: Union[str, None] = None):
return q
def query_or_cookie_extractor(
q: Annotated[str, Depends(query_extractor)],
last_query: Annotated[Union[str, None], Cookie()] = None,
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(
query_or_default: Annotated[str, Depends(query_or_cookie_extractor)],
):
return {"q_or_cookie": query_or_default}
from typing import Union
from fastapi import Cookie, Depends, FastAPI
from typing_extensions import Annotated
app = FastAPI()
def query_extractor(q: Union[str, None] = None):
return q
def query_or_cookie_extractor(
q: Annotated[str, Depends(query_extractor)],
last_query: Annotated[Union[str, None], Cookie()] = None,
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(
query_or_default: Annotated[str, Depends(query_or_cookie_extractor)],
):
return {"q_or_cookie": query_or_default}
Tip
Prefer to use the Annotated version if possible.
from fastapi import Cookie, Depends, FastAPI
app = FastAPI()
def query_extractor(q: str | None = None):
return q
def query_or_cookie_extractor(
q: str = Depends(query_extractor), last_query: str | None = Cookie(default=None)
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(query_or_default: str = Depends(query_or_cookie_extractor)):
return {"q_or_cookie": query_or_default}
Tip
Prefer to use the Annotated version if possible.
from typing import Union
from fastapi import Cookie, Depends, FastAPI
app = FastAPI()
def query_extractor(q: Union[str, None] = None):
return q
def query_or_cookie_extractor(
q: str = Depends(query_extractor),
last_query: Union[str, None] = Cookie(default=None),
):
if not q:
return last_query
return q
@app.get("/items/")
async def read_query(query_or_default: str = Depends(query_or_cookie_extractor)):
return {"q_or_cookie": query_or_default}
Info
请注意,在路径操作函数中我们只声明了一个依赖项:query_or_cookie_extractor。
但 FastAPI 会知道需要先解析 query_extractor,以便在调用 query_or_cookie_extractor 时将其结果传递给它。
graph TB
query_extractor(["query_extractor"])
query_or_cookie_extractor(["query_or_cookie_extractor"])
read_query["/items/"]
query_extractor --> query_or_cookie_extractor --> read_query
多次使用同一依赖项¶
如果同一个路径操作多次声明了某个依赖项,例如多个依赖项拥有共同的子依赖项,FastAPI 会知道在同一请求中该子依赖项只需调用一次。
它会将返回值保存在“缓存”中,并在同一请求中传递给所有需要该值的“依赖项”,而不是为同一请求多次调用该依赖项。
在高级场景中,如果您需要依赖项在同一请求的每个步骤中(可能多次)被调用,而不是使用“缓存”值,可以在使用 Depends 时设置参数 use_cache=False:
async def needy_dependency(fresh_value: Annotated[str, Depends(get_value, use_cache=False)]):
return {"fresh_value": fresh_value}
Tip
如果可能,请优先使用 Annotated 版本。
async def needy_dependency(fresh_value: str = Depends(get_value, use_cache=False)):
return {"fresh_value": fresh_value}
总结回顾¶
尽管这里使用了许多花哨的术语,但依赖注入系统其实非常简单。
就是一些与路径操作函数形式相似的函数。
但它仍然非常强大,允许您声明任意深度的嵌套依赖“图”(树结构)。
Tip
在这些简单示例中,这一切可能看起来并不那么实用。
但您将在安全相关章节中看到它的巨大作用。
同时您也会体会到它能为您节省多少代码量。